Design and Implementation of Text Classification Based on Fasttext Algorithm
Chaitongqing
School of Computer and Software,NUIST,Nanjing 210044,China
Abstract:In mid-to-late 2016, Facebook's Tomas Mikolov, the open source fastfast algorithm, caused an uproar in the industry. Fasttext algorithm is very fast in processing large data sets. It provides a simple and efficient method for text classification and characterization learning. The performance is faster than shoulder deep learning. This article will specifically study the fasttext algorithm, understand its model architecture, and implement the text classification of the fasttext algorithm. In the end, the application of fasttext algorithm will be introduced in detail.
Key words:Natural Language; Fast; Text Classification
本次实验使用的环境是python3.5[15]。关于python,它是一种将解释性、编译性、互动性和面向对象集为一体,同时层次也很高的脚本语言。与此同时,因为其他的各种语言常常用英文关键字和标点符号,与这些相比,python更加有语言特色结构,所以,它具有很强的可读性。
在搭建fasttext模型时,在这里借鉴了托马斯大牛开源的模型,同时对他的模型进行了一些改动,来适合本次实验。 环境:JetBrains PyCharm Community Edition