{$cfg_webname}
主页 > 机械机电 > 机械 >

生物反应器建模与控制策略

来源:56doc.com  资料编号:5D21721 资料等级:★★★★★ %E8%B5%84%E6%96%99%E7%BC%96%E5%8F%B7%EF%BC%9A5D21721
资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用. 帮助
资料介绍

生物反应器建模与控制策略(任务书,开题报告,论文16000字)
摘要
近年来,生物技术在农业、医药、食品、海洋开发及环境保护等领域的应用越来越广泛。由于生物反应过程复杂,影响因素多,对生物反应过程控制的要求也越来越高。发酵工程是是现代生物工程规模化生产的基础,本文主要针对发酵过程进行数学建模,并研究了发酵温度模型对发酵罐温度控制设计了相应的控制策略,主要研究内容有:
首先,研究了微生物生长动力学和发酵过程建模的方法,使用微分方程对发酵过程进行数学建模,并在MATLAB的Simulink平台下基于S-Function方法建立了生物反应器仿真模型,并在给定输入条件下观测所设计模型输出动态变化曲线,仿真结果表明所设计的模型比较准确反应了生物反应器工作过程,从而证明了模型的准确性。对发酵过程的重要影响因素——温度进行了模型研究,得出发酵温度传递函数。
然后研究了工程上常用的PID控制器,针对目前流行的模糊控制研究学习了模糊免疫PID控制原理及算法,在MATLAB上做出了仿真。根据PID控制和模糊免疫PID控制的仿真结果比较得出模糊免疫PID能减小超调和调节时间,可以得到更好的控制品质的结论。
其次,针对生物反应器温度控制存在的大滞后普通PID难以达到满意的控制效果,本文在PID控制基础上采用了史密斯预估控制补偿方案,并设计出补偿控制器的传递函数。MATLAB仿真结果证明史密斯预估补偿控制器加快了系统的响应速度,减小了系统超调,大大提高了系统的控制性能。
最后,针对反应器发酵罐夹套冷却水温度扰动而导致发酵罐内反应温度控制品质差的问题,设计了前馈控制器,给出了前馈控制器的数学模型,通过前馈控制实时控制冷却水流量将温度变化抵消,抑制了冷却水温度扰动对发酵温度的影响,仿真证实了前馈控制器的正确性。

关键词:生物反应器;PID控制;史密斯预估控制;前馈控制;
 
Abstract
In recent years, biotechnology has been used in agriculture, medicine, food, marine development and environmental protection and other fields more and more widely. Due to the complexity of the biological reaction process, the influencing factors are more and more demanding on the process of biological reaction. Fermentation engineering is the basis of large-scale production of modern biological engineering. This paper mainly aims at the mathematical modeling of the fermentation process, and the fermentation temperature model is designed to control the temperature of the fermentation tank. The main research contents are as follows:
Firstly, the methods of microbial growth kinetics and fermentation process modeling were studied. The mathematical model was established by differential equation. The bioreactor simulation model was established based on the S-Function method under MATLAB's Simulink platform. The simulation results show that the designed model accurately reflects the work process of the bioreactor, which proves the accuracy of the model.The factors influencing the fermentation process were studied by temperature, and the fermentation temperature transfer function was obtained.
Then,the author study the commonly used PID controller in engineering, and study the fuzzy immune PID control principle and algorithm for the popular fuzzy control research, and make the simulation on MATLAB. According to the simulation results of PID control and fuzzy immune PID control, the fuzzy immune PID can reduce the overshoot and adjust the time, and can get the better control quality conclusion.
Secondly, it is difficult to achieve satisfactory control effect for the large hysteresis normal PID of the bioreactor temperature control. In this paper, Smith's predictive control compensation scheme is adopted on the basis of PID control, and the transfer function of the compensation controller is designed. MATLAB simulation results show that Smith estimates the compensation controller to speed up the system response speed, reducing the system overshoot, greatly improving the system control performance.
Finally, the feedforward controller is designed for the temperature of the reaction tank in the fermentation tank, and the mathematical model of the feedforward controller is given. The feedforward control real-time control The cooling water flow counteracts the temperature change, which inhibits the effect of cooling water temperature disturbance on the fermentation temperature. The simulation confirms the correctness of the feedforward controller.
Key Words:Bioreactor model;PID control;  Smith predictive control; feedforward control

 
目录
摘要    I
Abstract    II
第1章绪论    1
1.1 论文的研究背景及意义    1
1.2 国内外研究现状    2
1.2.1 发酵过程建模研究现状    2
1.2.2 发酵过程温度控制研究现状    2
1.3 本文主要研究工作    3
第2章生物反应器建模    4
2.1 生物反应器分类    4
2.2 发酵过程的数学模型    4
2.2.1 微生物生长动力学    5
2.2.2 S-Function    8
2.3.2 生物反应器仿真模型    10
2.3 生物发酵温度过程建模    12
2.3.1 发酵温度模型特性分析    12
2.4.1 发酵温度过程建模    13
2.4 本章小结    14
第3章 PID控制器的设计    15
3.1 PID控制理论    15
3.1.1 PID概述    15
3.1.2 各控制器对控制过程的影响    15
3.1.3 PID整定方法    17
3.2 PID在发酵温度控制的应用    18
3.3 模糊控制理论    19
3.4 模糊免疫PID控制算法与仿真    21
3.4.1 模糊免疫PID控制算法    22
3.4.2 模糊免疫PID控制仿真    23
3.5 本章小结    24
第4章史密斯预估控制    25
4.1 史密斯预估控制概述    25
4.2 史密斯预估补偿控制器    26
4.2.2 史密斯预估控制器的设计    27
4.2.3 史密斯预估控制器仿真    28
4.3 本章小结    28
第5章前馈控制    29
5.1 发酵过程温度扰动    29
5.2 前馈控制原理及结构    29
5.3 前馈控制在发酵过程温度控制的应用    34
5.3.1 前馈控制器的设计    34
5.3.2 前馈-反馈控制器仿真    35
5.4 本章小结    36
第6章结论与展望    37
6.1 结论    37
6.2 研究展望    37
参考文献    38
致谢    40

推荐资料