{$cfg_webname}
主页 > 机械机电 > 机械 >

电磁胀形中板料与模具的撞击行为研究

来源:56doc.com  资料编号:5D21731 资料等级:★★★★★ %E8%B5%84%E6%96%99%E7%BC%96%E5%8F%B7%EF%BC%9A5D21731
资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用. 帮助
资料介绍

电磁胀形中板料与模具的撞击行为研究(任务书,开题报告,论文11400字)
摘要
本文借助有限元模拟仿真软件Ls-dyna对采用螺旋线圈放电的电磁成形进行模拟,对比自由胀形与有模具的电磁成形,分析两种电磁成形情况下板料的回弹,温度场及空洞体积分数的演变,通过对比两种情况来分析板料与模具的碰撞行为对成形精度及材料性能的影响。
论文主要研究电磁成形中模具与板料的碰撞行为,通过改变放电电压参数,探究撞击行为对成形精度及材料行为的影响。
研究结果表明:为了提高成形精度,减小板料与模具的撞击反弹,可减小放电电压参数,同时,板料与模具的撞击会使局部温度变高,空洞体积分数变小,板料致密度提高。
关键词:电磁成形;成形精度;温度场:GTN模型

Abstract
In this paper, the finite element simulation software Ls-dyna is used to simulate the electromagnetic forming of the spiral coil.Comparison of free bulging and mold forming,the springback, the temperature field and the void volume fraction of the two kinds of electromagnetic forming were analyzed.by comparing the two sheet metal and die collision behavior,influence of collision behavior of sheet metal and mold on forming accuracy and material properties was analyzed.
In this paper, the collision behavior of mold and sheet metal in electromagnetic forming is studied, and the effect of impact behavior on forming precision and material behavior is investigated by changing the discharge voltage parameters.
The results show that in order to improve the forming precision and reduce the impact bounce of the sheet and the mold, the discharge voltage parameter can be reduced. At the same time, the impact of the sheet and the mold will make the local temperature become higher and the void volume fraction becomes smaller Increased density.
Key Words:Electromagnetic forming; Forming precision; Temperature field;GTN model

目录
摘要    I
第一章绪论    1
1.1国内外研究现状    1
1.2课题研究内容、目标与拟采用的技术方案    3
1.2.1基本内容    3
1.2.2研究目标    4
1.2.3技术措施    4
第二章电磁成形有限元模拟    5
2.1 Takastu实验[17]    5
2.1.1等效电路    5
2.1.2在板料中产生的磁力    6
2.1.3互感    8
2.1.4工件的自由胀形    9
2.2电磁自由胀形的有限元模拟    10
2.3本章小结    13
第三章放电电压对成形精度的影响    14
3.1模具的设计    14
3.2改变放电电压对成形精度的影响    14
3.3本章小结    16
第四章碰撞行为对板料温度场及孔洞体积分数的影响    18
4.1碰撞过程对温度场的影响    18
4.1.1温度场有限元模型建立    18
4.1.2温度场结果及分析    18
4.2 板料与模具碰撞过程中孔洞体积分数的演变    20
4.2.1 GTN损伤模型概论[15]    20
4.2.2 GTN损伤模型的建立    21
4.2.3 孔洞体积分数在碰撞时的演变    22
4.3本章小结    24
第五章主要结论与展望    25
5.1 结论    25
5.2展望    25
参考文献    27
致谢    29

推荐资料