基于任务目标定向系列机器人机械手的设计描述
来源:56doc.com 资料编号:5D24226 资料等级:★★★★★ %E8%B5%84%E6%96%99%E7%BC%96%E5%8F%B7%EF%BC%9A5D24226
资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用. 密 保 惠 帮助
资料介绍
基于任务目标定向系列机器人机械手的设计描述(中文5200字,英文3000字)
摘要
机器人技术的目标是将现实世界的任务自动化并委托给机器人操纵者。今天机器人被应用于各种各样的任务;从非常传统的材料处理到非常复杂的远程机器人手术。尽管通用操作器很常见,但它们并不能保证最优的任务性能。任务优化机械手比通用机械手具有更高的效率。对于任务优化的工业机械手,需要在最短的时间内,以最低的运行成本和功率需求,用最高的效率完成一定的工作。
机器人最优几何结构的计算是现代机器人运动学中最复杂的问题之一。机器人操纵器的设计和制造是为了执行某些预先确定的任务。因此,在机械臂的设计和合成过程中,将这些任务要求纳入其中是非常重要的。这种任务要求和性能约束可以根据所需的末端执行器位置、方向和沿任务轨迹的速度来指定。
机械手的结构与运动性能有着密切的关系。多年来,机器人研究人员一直试图开发一个基于任务需求的框架来采用逆向工程最优机械手几何形状。每个机械手只能执行一组特定的任务,有些任务的效率会更高。在设计阶段,主要是根据经验和直觉来确定适合某项工作的最佳机械手结构。对一些广泛使用的机械手结构进行严格的分析,并收集一些专用的分析工具,这对目标的完成可能会有所帮助。然而,从任务描述中对机械手结构进行逆向工程,以保证在一组操作约束条件下的最优任务性能时,还缺乏一个全面的框架。这种基于任务的设计方法的最终目标是能够从任务描述和操作约束生成运动学和动力学参数。
在这项工作中,我们定义、开发和测试了一种基于任务需求生成最优机械手几何结构的方法。这项工作的另一个目标是在用户定义的联合约束下保证任务性能。利用该方法,可以生成任务型最优机械手结构,保证给定操作约束下的任务性能。
GOAL DIRECTED DESIGN OF SERIAL ROBOTIC MANIPULATORS BASED ON TASK DESCRIPTIONS
abstract
The goal of robotics is to automate and delegate real-world tasks to robotic manipulators. Today robots are being applied to wide range of tasks; from the very traditional material handling tasks to the very sophisticated tele-robotic surgery. Even though general-purpose manipulators are commonplace they do not guarantee optimaltask performance. Task optimized manipulators are more effective and efficient thangeneral purpose manipulators. There is a great need for task optimized industrialmanipulators that can perform a certain set of jobs with the best efficiency, in the shortesttime, and with the least operating cost and power requirements.
Computing the optimal geometric structure of manipulators is one of the mostintricate problems in contemporary robot kinematics. Robotic manipulators are designedand built to perform certain predetermined tasks. It is therefore important to incorporatesuch task requirements during the design and synthesis of the robotic manipulators. Suchtask requirements and performance constraints can be specified in terms of the requiredend-effector positions, orientations and velocities along the task trajectory.
There is a close relation between the structure of the manipulator and itskinematic performance. Robotic researchers have over the years tried to develop aframework to reverse engineer optimal manipulator geometries based on taskrequirements. Every robotic manipulator can only perform certain set of a set of tasks,and some more efficiently than others. Deciding the best manipulator structure for arequired job at the design stage is done mainly on the basis of experience and intuition.The rigorous analysis of a few widely used manipulator structures and a collection of afew ad hoc analytical tools can be of some help. However, the need for a comprehensiveframework to reverse engineer manipulator structures from task descriptions that canguarantee optimal task performance under a set of operating constraints is still lacking.The ultimate goal of this task-based design approach is to be able to generate both thekinematic and dynamic parameters from task descriptions and operating constraints.
In this work, we define, develop and test a methodology that can generate optimalmanipulator geometric structures based on the task requirements. Another objective ofthis work is to guarantee task performance under user defined joint constraints. Using thismethodology, task-based optimal manipulator structures can be generated that guaranteetask performance under set operating constraints. |