{$cfg_webname}
主页 > 硕士 >

基于STM32自供电继电保护装置的设计(硕士)

来源:56doc.com  资料编号:5D21220 资料等级:★★★★★ %E8%B5%84%E6%96%99%E7%BC%96%E5%8F%B7%EF%BC%9A5D21220
资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用. 帮助
资料介绍

基于STM32自供电继电保护装置的设计(硕士)(论文29000字)
摘要
当今中国,国民经济高速发展,工业和科技都得到了质的改变。然而,不论经济如何发展,科技技术取得多大的突破,都离不开以电力安全为前提。电力系统安全是我们不可以回避的问题,为了能够确保电力系统的运行的安全性,继电保护装置是当下保证电力安全的主要手段[1,2]。由于,在某些特定的工作环境下无法为设备提供工作电源,因此本文设计了一款自供电继电保护装置,可以从被测的电路系统中获取电能,保证设备的正常运行。并且可以为设备提供工作电源的变电站中,使用辅助电源为设备进行供电。可以实现设备工作环境的多样化。
在本文中首先介绍了继电保护发展的起源和研发的背景,并且阐述当下继电保护装置的发展的趋势[3]。综合继电保护装置趋势与实际工作环境因素的考虑,设计一款以STM32单片机为核心的继电保护装置。在本文中的继电保护装置将电流信号通过信号调理电路转换成可以被A/D转换器采集的电压信号[4]。对于自供电电源模块主要是利用电流互感器从被测电路中获取交流电流,通过对电容的充放电的过程将电流源转换成电压源,为了控制电压的稳定,设计由可控硅和可控精密稳压器件组成一个泄放稳压电路,保证自供电电源的稳定性。辅助电源模块选用金太阳公司研发生产的开关电源模块,可以将外部交流电转变成24V的直流电源。两种不同的取电模式最终都是通过DC-DC子电源电路将其转换成适合装置中电子元器件工作电压。通信模块使用RS485通信总线,因为RS485总线传输距离远,抗干扰性强[5]。配合MODBUS通信协议可以实现多数据,多类型数据的传输。
装置软件开发是按照分层的设计理念,将整个软件程序划分为数据处理与保护功能模块、中断服务模块、故障数据处理模块和通信程序模块[6]。为了能够及时的执行每个软件功能模块和提高代码的执行效率,在此次的软件代码编写个过程中使用uC/OS-II操作系统。由uC/OS-II操作系统对每个软件功能模块进行建立和调度。在测试环节通过大量的模拟电路故障,检测设计的继电保护装置能否达到设计要求[7]。并且对比实验数据总结装置软件和硬件设计是否合理。

关键词:继电保护,STM32,uC/OS-II,信号调理,MODBUS

Abstract
Nowadays, under the environment of the rapid development of China's national economy, both industry and science and technology have made qualitative leaps. However, no matter how the economy develops and how much technological and technological breakthroughs can be made, power security can not be separated. Power system security is an issue that we can not avoid. In order to ensure the safety of power system operation, relay protection devices are the main means of ensuring power security. Because of the inability to supply operating power to the device under certain operating conditions, this article designed a self-powered relay protection device that draws electrical energy from the circuit under test. And in a substation where a device can provide a working power source, an auxiliary power source may be used to power the device. Diversification of equipment working environment can be achieved.
n this paper, firstly, the origin of relay protection and the background of research and development are introduced, and the current trend of development of relay protection devices is described [3]. Based on the consideration of the trend of the relay protection device and the actual working environment, a relay protection device based on the STM32 microcontroller is designed. The relay protection device in this paper converts the current signal through the signal conditioning circuit into a voltage signal that can be collected by the A / D converter. For self-powered power supply module is mainly the use of current transformer from the circuit under test to obtain AC current through the process of charging and discharging of the capacitor current source into a voltage source, in order to control the voltage stability, the design by the SCR and controllable Precision regulator devices form a discharge regulator circuit to ensure the stability of self-powered power supply. The Auxiliary Power Module uses a switching power supply module from Golden Sun to convert external AC to 24V DC. The two different power take-off modes are eventually converted to the operating voltage of the electronic components in the device through the DC-DC sub-power supply circuit. Communication module uses RS485 communication bus, because RS485 bus transmission distance, strong anti-interference. With MODBUS communication protocol can achieve multi-data, multi-type data transmission.
Device software development is based on the hierarchical design concept, the entire software program is divided into data processing and protection function module, interrupt service module, fault data processing module and communication program module. In order to be able to implement each software function module in time and improve the execution efficiency of the code, uC / OS-II operating system is used in this software code compilation. Each software function module is set up and dispatched by uC / OS-II operating system. In the test session through a large number of analog circuit failure, testing the design of the relay protection device can meet the design requirements. And the experimental data to compare the device software and hardware design is reasonable.
Key words:Relay protection;STM32;uC/OS-II;Signal conditioning;MODBUS

目录
摘要    I
Abstract    II
Key words:Relay protection;STM32;uC/OS-II;Signal conditioning;MODBUS    III
第一章绪论    1
1.1研究背景和意义    1
1.2国内外发展现状及趋势    2
1.3研究内容与课题来源    3
1.4论文结构    4
第二章继电保护原理概述及其设计方案    5
2.1 继电保护原理概述    5
2.2 数据采集与保护算法    7
2.2.1数据采集频率的选择    7
2.2.2 滤波算法    8
2.2.3 测量算法    9
2.3系统总体设计方案    12
2.3.1硬件设计方案    12
2.3.2软件设计方案    13
2.4本章小结    14
第三章系统硬件设计    15
3.1核心控制模块设计    15
3.1.1 STM32F103VB芯片简介    15
3.1.2 核心控制模块电路设计    16
3.1.3 D/A转化模块设计    16
3.1.4电流模拟量电路设计    18
3.2硬件外围电路设计    19
3 .2.1 开入量电路模块设计    19
3.2.2开出量电路模块设计    20
3.2.3脉冲电路模块设计    20
3.3.4RS485通信模块电路设计    21
3.3.5看门狗模块电路设计    22
3.3.6储存模块电路设计    24
3.3.7时钟模块电路设计    25
3.4电源模块设计    25
3.4.1 自供电模块电路设计要求    25
3.4.2 自供电模块电路设计    26
3.4.2 辅助电源供电电路设计    28
3.4.1 锂电池供电电路设计    28
3.4.3 +5V和+3.3V电源设计    29
3.5 LCD模块和按键模块设计    30
3.6本章小结    32
第四章系统软件设计    33
4.1开发环境介绍    33
4.1.1 uC/OS-II操作系统介绍    33
4.1.2开发软件KEIL4介绍    34
4.2系统软件的概述      35
4.2.1系统主程序设计    36
4.3.1保护功能程序设计    37
4.3.2 电源管理程序设计    38
4.3通信协议设计方案    39
4.3.2 MODBUS通信软件设计    41
4.3.2 人机交互界面程序设计    42
4.4本章小结    43
第五章系统测试与分析    44
5.1实验平台    44
5.2测量功能测试    45
5.3保护功能测试    46
5.4电源测试    48
5.4 自供电启动测试    50
5.4上电延时测试    50
5.5电流转换调理信号测试    50
5.5 应用程序测试    51
5.6本章小结    52
第六章总结与展望    53
6.1 工作总结    53
6.2 工作展望    54
参考文献    56
致谢    59

推荐资料